Métodos Numéricos

Cursada Segundo Semestre 2011

Parcial Nro. 1 - 3 de Mayo del 2011

Nombre:						Matrícula:			Carrera:
Email:									
	Ejer. 1	Ejer. 2	Ejer. 3	Total Teoría	Ejer. 4	Ejer. 5	Total Práctica	Total Parcial	

Nota: Entregar por separado los ejercicios teóricos (1,2) de los prácticos (3,4) TEORIA

- 1. a) En el método de punto fijo para la resolución de ecuaciones no lineales ¿Qué condición asegura que una ecuación tiene por lo menos una raíz en [a, b]? Justifique
 - b) En el mismo método ¿Qué condición asegura que la ecuación tiene una única raíz en [a, b]? Justifique
 - c) ¿Cómo puede demostrar que si se cumple la condición b), además para cualquier punto elegido en [a, b] el método converge a la solución?
 - d) ¿Cuáles son las condiciones de convergencia del método de Newton-Raphson, qué implica cada una? Son necesarias o suficientes, por qué?
 - e) ¿Cuáles son las ventajas y desventajas de los métodos cerrados para la resolución de ecuaciones no lineales?
- 2. a) ¿Qué criterios de aproximación puede utilizar para la solución a un sistema de ecuaciones. Son excluyentes entre sí?
 - b) Puede establecer para sistemas lineales algún tipo de relación entre los criterios de aproximación? Explique.
 - c) Cuáles son las ventajas y desventajas entre el método LU y algún método indirecto para resolución de ecuaciones lineales.

Parcial Nro. 1 - 3 de Mayo del 2011

Nombre:

PRACTICA

3. Para el sistema A*x=b:

$$\begin{bmatrix} 25 & -3 & 20 \\ 20 & 30 & 24 \\ 10 & -12 & -9 \end{bmatrix} * \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 20 \\ 17 \\ 17 \end{bmatrix}$$

- a) Calcule la solución manualmente por eliminación Gaussiana.
- b) Verifique la solución del item anterior.
- c) Evalúe si el sistema está bien condicionado. Justifique.
- d) Analice la convergencia del método de Jacobi para este problema.
- e) En caso de no ser convergente, es posible hacerlo convergente por intercambio de filas, en este problema en particular?
- f) Aplique manualmente el método de Gauss-Seidel hasta 2 iteraciones partiendo del [0 0 0]
- g) Para la última iteracción, calcule el error y el residuo relativo al primer inciso.
- 4. a) Cuál es el error absoluto de 0.555 como aproximación de 0.5566?
 - b) Con cuantas cifras decimales significativas es la aproximación de 0.5566 por el número de 0.555?
 - c) Transforme ambos números a formato IEEE, con 7 dígitos de mantisa y 3 dígitos de exponente en exceso 4.
 - d) Transforme los números obtenidos en (4c) a decimal. Mostrar la operación completa a partir del los 14 bits obtenidos en (4c).
 - e) Cuál es el error absoluto y relativo entre 0.555 y el resultado obtenido de (4d).
 - f) Qué tipo de error se comete al aplicar los pasos (4c) y (4d)?
 - q) Qué número decimal representa:
 - 1) 1 1 0 1 1 0 entero exceso 32.
 - 2) 1 1 0 1 1 0 entero con signo
 - 3) 1 1 0 1 1 0 número en punto flotante formato IEEE. Primer bit de signo, siguientes 3 bits de mantisa, siguientes 2 bits de exponente exceso 2.